
Storing Data

CSC443, Winter 2019
Sayyed Nezhadi



Vo
lat
ile

No
nv
ola

til
e

Prim
ary

Secondary

Tertiary



Levels of Memory Hierarchy

• Cache: Volatile, fastest accessible memory (a few 
nanoseconds), expensive, typical size in megabytes

• Main Memory: Volatile, most used memory, fast access 
(around 100 nanoseconds), typical size in order of 10GB

• Secondary Storage: Hard drive or SSD, nonvolatile, very 
large storage capacity (terabytes), much slower than 
memory (a few milliseconds for hard drives).

• Tertiary Storage: tape drives or robotic disk arrays, 
nonvolatile, mostly used for data backup, huge storage 
capacity (petabytes), very slow access (seconds or 
minutes).

☛In this course, we are mainly concerned with the 
main memory and the secondary storage



Move Data to & from Secondary Storage

• The mechanical design of the hard drive naturally 
leads itself to superior sequential access.

• A hard drive consists of an (array of) rotating disk. 
Each disk has a head driven by a mechanical arm 
which performs the bitwise read and write. If a 
sequential data block is accessed, all bits can be 
read or written during a single rotation.

• Random access of the hard drive data may require 
multiple rotations for the head to reach all the 
regions on the disk.



• Seek Time: measures average time it takes the head 
to travel to the region of interest on disk. Typically, 
the seek time is a few milliseconds.

• Data Transfer Rate: is the steady state speed the head 
can read or write data between the disk buffer and 
the disk. The data transfer rate can reach 1 terabytes 
/ second.

Data Transfer Rate



Block Size
• The data transfer speed depends on:
– contiguousness of the accessed physical locations on the disk
– the size of the accessed data per request (block) 

When data is requested 
in large enough blocks, 
we see a drastic 
improvement in data 
transfer rate.

Typical transfer time 
vs. block size



Buffer Manager
• Another technique to further combat disk latency.
• All disk I/O issued by the database are done in units 

of pages.
• A section of the memory is used as the buffer pool. 
• The buffer pool is partitioned into frames. Each 

frame is the size of a page.
• The buffer manager performs lazy disk I/O:
– Disk read and write are first performed as frame read and 

write in the buffer pool
– Data is transferred between the buffer pool and disk only 

when a requested page is not cached by the buffer pool, 
or new pages need to be cached but the buffer pool is full.



Relational Data on Disk



Heap File for Pages
• A heap file is a data structure that holds pages of 

data.
• Functionally, a heap file is similar to the main 

memory data structure linked list.
• It serves as a container of generic data items in an 

unordered fashion
• Similar to linked list, heap file:
– offers efficient append of new data,
– supports sequential scanning,
– does not offer random access.



Properties of Heap File
• Data exists on secondary storage: it's designed to be 

efficient for large data volume, with capacity only 
limited by the available secondary storage.

• A heap file can span over multiple disks or machines:
heap file can use large addressing schemes to span 
across multiple disks or ever networks.

• Data is organized into pages.
• Pages can be partially empty.



Heap File as a Linked List

• Problem: finding free spaces is very expensive. To 
locate a page with free space (page3), we have to 
scan through the pages (page1 and page2).



Directory-based Heap File
• Idea: use one or more blocks to store the directory of all 

the page addresses and their respective free space.

☛ Since page1 and page2 are both full, their free space entries 
n1 and n2 will be both zero



If there are too many 
pages that the 
directory itself needs 
to span over multiple 
pages, we may use a 
linked list to store 
the directory.



Record Serialization
• How to convert tuple records into byte arrays to be 

stored on disk (inside pages)?
• Serializing fixed length records: all records must be 

exactly the same length.
• Example:

• Record Size:



Record Serialization
• Serializing variable length records: records have 

variable size. A popular method is to encode 
the offsets of the field boundaries in the header.

• Example:



• Having these boundary offsets provides a natural way of 
encoding NULL valued fields -- they can be viewed as fields 
with zero bytes:

• birthdate = NULL

☛ Here, we have assumed all value in a record are stored 
together. This is sometimes called row-oriented storage. 
Alternatively, all values of an attribute can be stored together 
in what is called column-oriented storage.



Page Format
• How data is formatted in a each page?
• Simplification: Every page stores tuples with the same 

schema:
– Every relation (table) occupies at least one page.
– Page contains either fixed length tuples or variable length 

records.
• Important properties of page formats:

– efficiently utilize disk space.
– support scan, insert, delete and update with minimal disk I/O.
– efficient way of assigning unique ID's to records (invariant 

during insert, delete and update )
– each record fits into a page (will be relaxed later)



Page Format for Fixed Length Records

• M slots of equal size
• Each slot one record
• Last segment:

– Value of M
– M bits to indicate if 

the respective slot is 
occupied or free.



Page Format for Fixed Length Records
• Record ID: concat of <page ID, record offset>
• The record ID will never be affected by changes to the 

database.

INSERT UPDATE DELETE
1. Get M
2. Scan the M bits 

backward
3. All the bits are 1 -> 

no room in the page
4. K-th bit is 0 -> write

at offset nk

Simply overwrite 
the old record (at 
the same location)

Set the 
corresponding 
bit in the bit 
index to 0



Page Format for Variable Length Records

Variable length records are much more difficult to 
maintain in a page for the following reasons:
• The record boundaries and field boundaries are 

dependent on the data content.
• When the data is modified, record size may 

change, resulting in physical relocation of the 
record (requires efficient methods to move records 
in a page or between pages)

• If record ID needs to be maintained, the record ID 
assignment must be invariant even if the record is 
to be moved.



Page Format for Variable Length Records
One efficient design is to maintain a page header which 
tracks the free space and a directory of records.



Page Format for Variable Length Records
• Record ID: concat of <page ID, directory index>

• The record ID is independent of changes to the database.

INSERT DELETE
1. Check free space can hold the new

record and the new entry in the 
directory

2. Write the record at the start of free 
space

3. Update directory (offset & size)
4. Update the free space pointer

1. If last entry in the directory, 
delete the entry and update 
free space pointer

2. Else, make the offset = -1 in 
the entry (mark sit as deleted)

☛ Deletion leaves holes in the page. The space occupied by 
deleted records cannot be reclaimed unless we reorganize the 
page such that all space before the free space pointer are 
contiguously occupied. This is called compacting the page.



Page Format for Variable Length Records

UPDATE

1. If new record smaller than the old record, update the 
record and the record size in the directory

2. Else, if enough free space, insert in the free space and 
update directory (offset & size)

3. Else, try to compact the page
4. If still not enough space, allocate a new page and write 

the new record in the new page. But record ID needs to 
be changed. We will make the original record as a 
forwarding record. The forwarding record only contains
header information indicating that it is a forwarding 
record, and the record ID of the new record.


